Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase.

نویسندگان

  • J F Turrens
  • J D Crapo
  • B A Freeman
چکیده

Survival of rats exposed to 100% oxygen was increased from 69.5 +/- 1.5 to 118.1 +/- 9.9 h (mean +/- SEM, P less than 0.05) when liposomes containing catalase and superoxide dismutase were injected intravenously before and during exposure. The increased survival time in 100% oxygen was also associated with significantly less fluid in the pleural cavity. Rats injected with catalase- and superoxide dismutase-containing liposomes, which had increased survival in 100% oxygen, had increased lung wet weight upon autopsy compared with saline-injected controls (2.9 +/- 0.2 g/lung vs. 4.8 +/- 0.4 g/lung, mean +/- SE, P less than 0.05). Intravenous injection of control liposomes along with catalase and superoxide dismutase in the suspending buffer decreased the mean pleural effusion volume 89% and had no significant effect on survival time. Lung catalase and superoxide dismutase activities were increased 3.1- and 1.7-fold, respectively, 2 h after a single intravenous injection of liposomes containing catalase or superoxide dismutase. Superoxide dismutase activity was also significantly greater than controls in both air- and 100% oxygen-exposed rat lungs, when enzyme activity was assayed 24 h after cessation of injection of control and oxygen-exposed rats with enzyme-containing liposomes every 12 h for 36 h. Free superoxide dismutase and catalase injected intravenously in the absence of liposomes did not increase corresponding lung enzyme activities, affect pleural effusion volume, lung wet weight, or extend the mean survival time of rats exposed to 100% oxygen. The clearance of liposome-augmented 125I-labeled catalase from lung and plasma obeyed first order kinetics according to a one-compartment model. When clearance of liposome-augmented catalase activity or radioactivity were the parameters used for pharmacokinetic studies, the half-life of augmented lung catalase was 1.9 and 2.6 h, respectively. The half-life of liposome-entrapped catalase and superoxide dismutase activity in the circulation was 2.5 and 4 h, respectively, while intravenously injected catalase and superoxide dismutase had a circulation half-life of 23 and 6 min, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of oxygen radicals in dye-mediated photodynamic effects in Escherichia coli B.

Photosensitive dyes representative of the thiazines, xanthenes, acridines, and phenazines mediated phototoxicity in Escherichia coli B. The observed phototoxicity was sensitizer-, light-, and oxygen-dependent and is therefore a photodynamic effect. Hydroxyl radical scavengers conferred protection against the photodynamic action of all of the representative dyes. The extent of protection was dep...

متن کامل

Liposome-entrapped superoxide dismutase reduces cerebral infarction in cerebral ischemia in rats.

We studied the role of superoxide radicals in the pathogenesis of ischemic brain injury using a model of focal cerebral ischemia in 102 rats and liposome-entrapped CuZn-superoxide dismutase, which can penetrate the blood-brain barrier and cell membranes efficiently. The bolus intravenous administration of 25,000 units of liposome-entrapped CuZn-superoxide dismutase elevated superoxide dismutase...

متن کامل

MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources o...

متن کامل

Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains.

Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mech...

متن کامل

Protection of insulin-producing RINm5F cells against cytokine-mediated toxicity through overexpression of antioxidant enzymes.

Nitric oxide (NO) and reactive oxygen species (ROS) are crucial elements in cytokine-mediated beta-cell destruction. In insulin-producing RINm5F cells, overexpression of cytoprotective enzymes provides significant protection against the synergistic toxicity of NO and ROS. We therefore examined whether overexpression of catalase (Cat), glutathione peroxidase (Gpx), and Cu/Zn superoxide dismutase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 1984